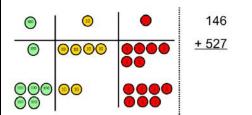
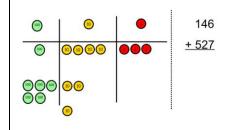
Ladbrooke JMI School

Progression in Calculations

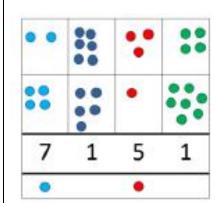

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar.	3 Jort Jord Jord <t< td=""><td>4 + 3 = 7 $10 = 6 + 4$ 5 3 Use the part-part whole diagram as shown above to move into the abstract.</td></t<>	4 + 3 = 7 $10 = 6 + 4$ 5 3 Use the part-part whole diagram as shown above to move into the abstract.
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12 + 5 = 17$ $\underbrace{12 + 5 = 17}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20}_{10 + 11 + 12 + 13 + 14 + 15 + 16 + 18 + 18 + 18 + 18 + 18 + 18 + 18$	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.


Regrouping to make 10.	6 + 5 = 11	Use pictures or a number line. Regroup or partition the smaller number to make 10.	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?
	Start with the bigger number and use the smaller number to make 10.	9 + 5 = 14 $1 4$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$	
Adding three single digits	4 + 7 + 6= 17 Put 4 and 6 together to make 10. Add on 7.		4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make 10 and then add on the remainder.
	Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	
Column method- no regrouping	24 + 15= Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.	After practically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	$\frac{Calculations}{21 + 42} =$
Symbols you will see in books: Ones Tens Hundreds Thousands			21 + <u>42</u>

Column methodregrouping

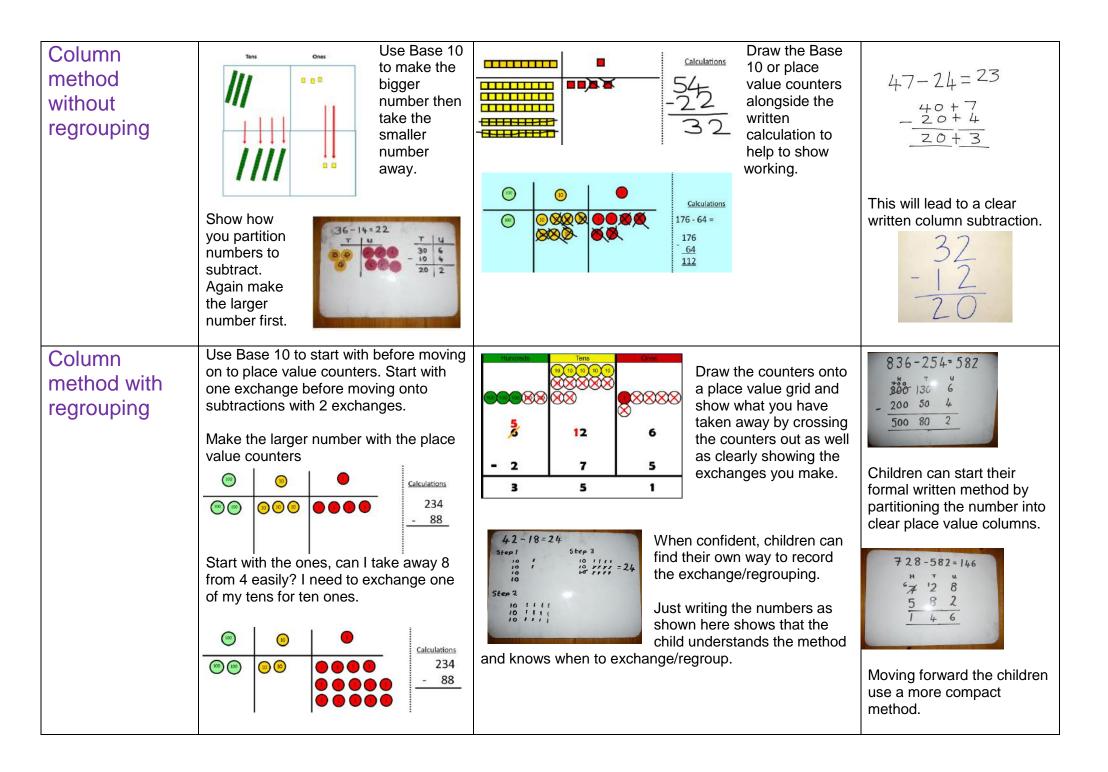
Make both numbers on a place value grid.

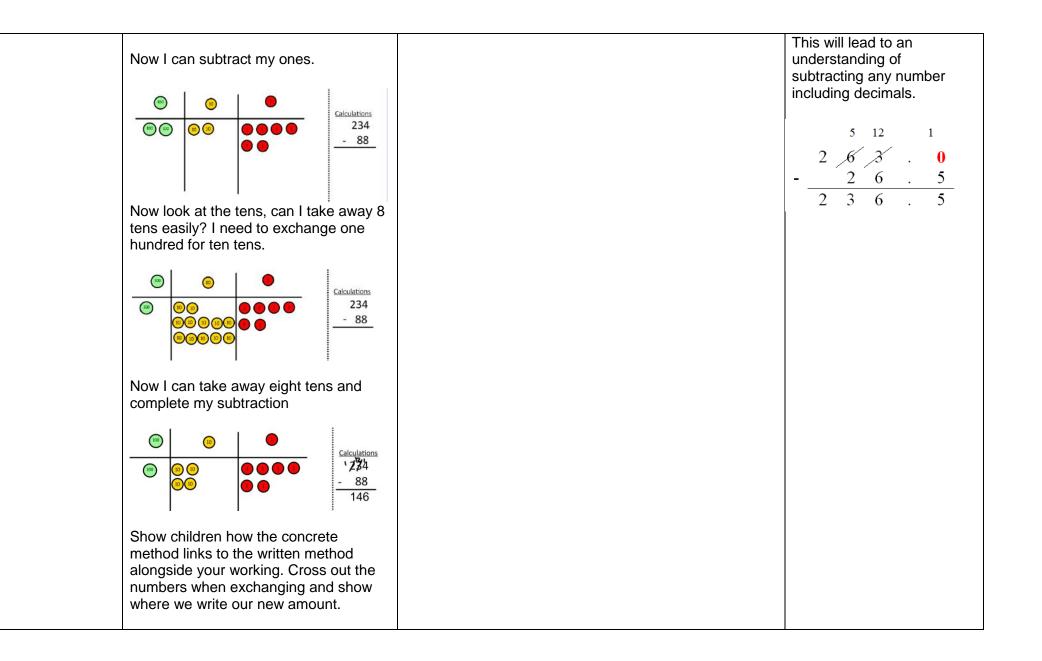

Add up the units and exchange 10 ones for one 10.

Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.

This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.

As children move on to decimals, money and decimal place value counters can be used to support learning. Children can draw a pictoral representation of the columns and place value counters to further support thei learning and understanding.

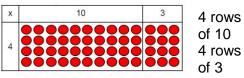



əir	Start by partitioning the numbers before moving on to clearly show the exchange below the addition.
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	536 As the children move on, $\frac{+85}{621}$ decimals with the same number of decimal places and different. Money can be
	used here.
	used here. 72.8 ± 54.6 127.4 1 1 2 3 . 5 9 $\pm \frac{\pounds}{2} 3 . 5 9$ $\pm \frac{\pounds}{2} 3 . 5 9$ $\pm \frac{\pounds}{2} 3 . 5 9$ $\pm \frac{1}{2} 7 . 5 5$ $\pm \frac{3}{1} . 1 4$ 9 . 0 8 0 5 9 . 7 7 0 $\pm 1 . 3 0 0$ 9 3 . 5 1 1 2 1 2 2 1 2 2

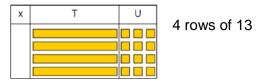
Subtraction

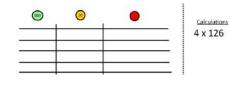
Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. 6-2=4	Cross out drawn objects to show what has been taken away. $\begin{array}{c} & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & &$	18 -3= 15 8 - 2 = 6
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13 – 4 Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track 9 10 11 12 13 14 15 Start at the bigger number and count back the smaller number showing the jumps on the number line. -10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

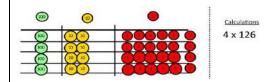
Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find	$\begin{array}{c} +6 \\ \hline \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array}$ Count on to find the difference. Draw bars to find the difference in age between them. the difference between 2 \\ 13 \\ 7 \\ 10 \\ 10 \\ 11 \\ 12 \\ 10 \\ 11 \\ 12 \\ 10 \\ 11 \\ 12 \\ 10 \\ 10	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part Part Whole Model	the difference the difference the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? 10 - 6 =	numbers.	5 10 Move to using numbers within the part whole model.
Make 10	14 – 9 = Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	13 - 7 = 6 3 4 5 + 2 + 3 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	16 – 8= How many do we take off to reach the next 10? How many do we have left to take off?

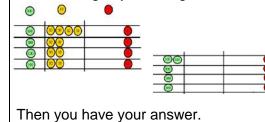

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	$\begin{array}{c} 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30

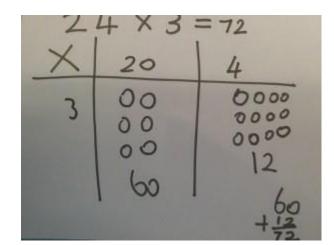

Repeated addition	Image: Second system Image: Second system Image: Second	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 3 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 3 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 3 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 3 star biscuits on. How many biscuits are there? There are 3 plates. Each plates are 3 star biscuits on. How many biscuits are there? There are 3 plates. Each plates.	Write addition sentences to describe objects and pictures. 2+2+2+2+2=10
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition. 000000000000000000000000000000000000


Show the link with arrays to first introduce the grid method.


Move on to using Base 10 to move towards a more compact method.


Move on to place value counters to show how we are finding groups of a number.We are multiplying by 4 so we need 4 rows.

Fill each row with 126.



Add up each column, starting with the ones making any exchanges needed.

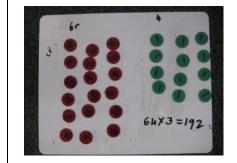
Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

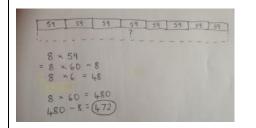
Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

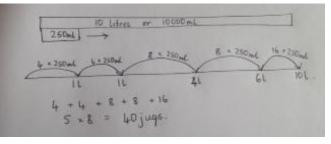
×	30	5
7	210	35

210 + 35 = 245


Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

*	10	8
10	100	80
3	30	24


Х	1000	300	40	2
10	10000	3000	400	20
8	8000	2400	320	16

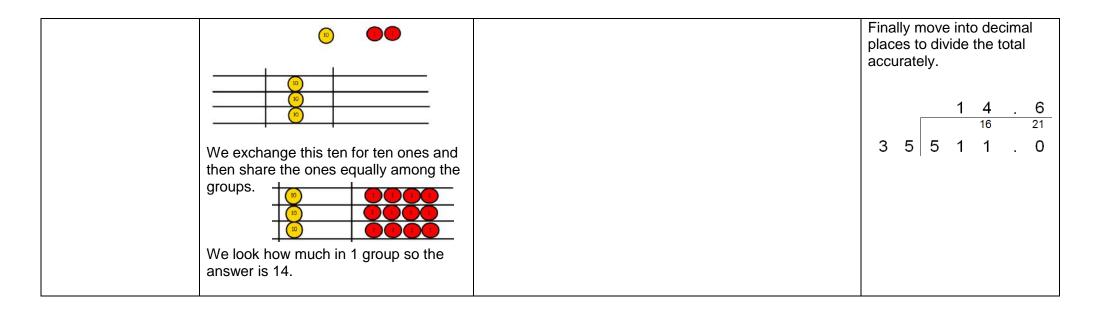

Column multiplication

Children can continue to be supported by place value counters at the stage of multiplication.

It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below. Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.

Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. 32 x 24 8 (4 x 2) 120 (4 x 30) 40 (20 x 2) 600 (20 x 30) 768 7 4 6 3 1 2 2 1 0 4 0 4 2 0 0 6 6 2

This moves to the more compact method.


Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $ \begin{array}{c} $	Share 9 buns between three people. $9 \div 3 = 3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. 0 1 2 3 4 5 6 7 8 9 10 11 12 3 3 3 3 3 3	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	
		20 ? 20 $\div 5 = ?$ 5 x ? = 20	

Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Image: Constraint of the strate into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $7 \times 4 = 28$ $4 \times 7 = 28$ $28 \div 7 = 4$ $28 \div 4 = 7$
Division with a remainder	14 ÷ 3 = Divide objects between groups and see how much is left over	iJump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. 0 4 8 12 13 Draw dots and group them to divide an amount and clearly show a remainder. $\widehat{\bigcirc}$ $\widehat{\bigcirc}$ $\widehat{\bigcirc}$ $\widehat{\bigcirc}$ $\widehat{\bigcirc}$ $\widehat{\bigcirc}$ remainder 2	Complete written divisions and show the remainder using r. $29 \div 8 = 3 \text{ REMAINDER 5}$ $\uparrow \uparrow \uparrow \uparrow \uparrow$ dividend divisor quotient remainder

Long division 'Chunking'	Chunking can be modelled as an array using place value counters; so for the calculation $72 \div 6 = ?$ - one side of the array is unknown and by arranging the Base 10 equipment to make the array we can discover this unknown. The written method should be written alongside the equipment so that children make links. ?	Children count in 'chunks' Children should be encouraged to set their working in the middle of the page and use space either side to list the relevant multiplication tables
	6 72	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		Answer : 24 Moving on to larger chunks and remainders: $ \begin{array}{c} 6\\12\\18\\24\\30\\36\\42\\48\\54\\60\end{array} $ Answer : 32 r 4 $ \begin{array}{c} 196 \div 6\\32 r 4\\120\\180\\240\\300\\360\\420\\480\\540\\60\end{array} $
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		Answer: 27

			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Short division	Tens Units 3 2 3 9 9 3 9 9 9 3 9 9 9 3 9 9 9 9 3 9 9 9 9 4 9 9 9 9 42 ÷ 3 3 9 9 9	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. 4 8 7 2 Move onto divisions with a
$42 \div 3$			remainder. <u>8 6</u> r 2 <u>3</u> 5 4 3 2

